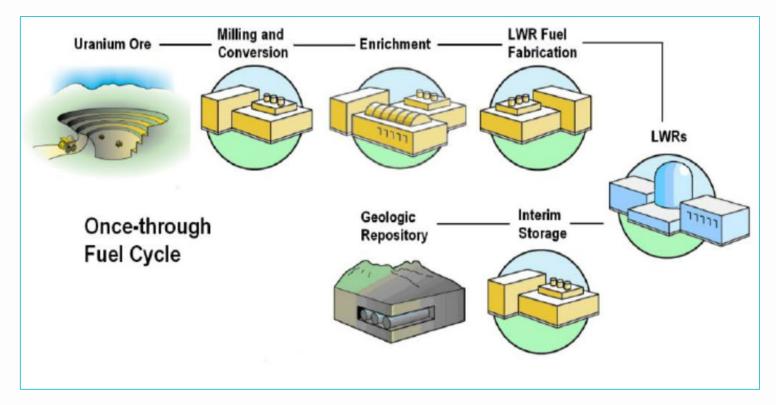


Presentation to Maryland Commission on Climate Change, Mitigation Working Group

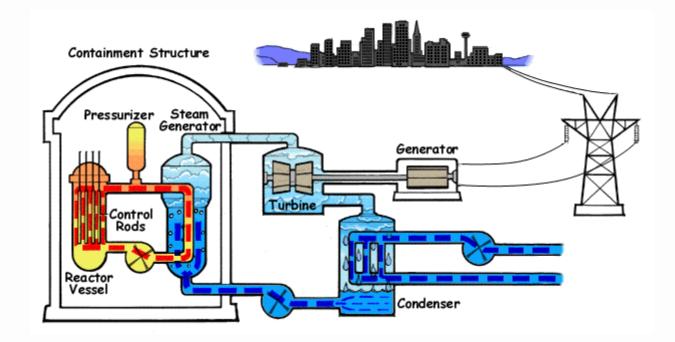
John Kotek Senior VP, Policy & Public Affairs

June 2022



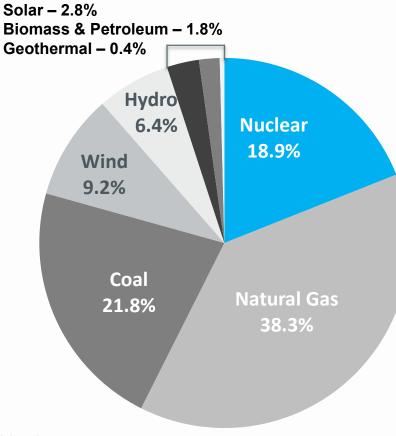
©2020 Nuclear Energy Institute

The Nuclear Fuel Cycle

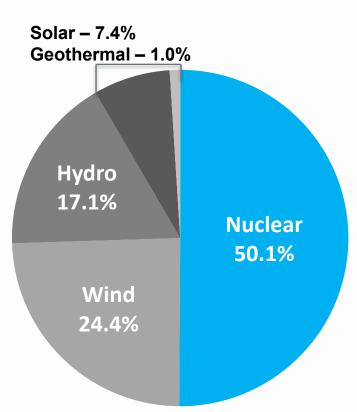


Source: Wigeland, R & Dixon, Brent. (2020). Identification, Description, and Characterization of Existing and Alternative Nuclear Energy Systems.

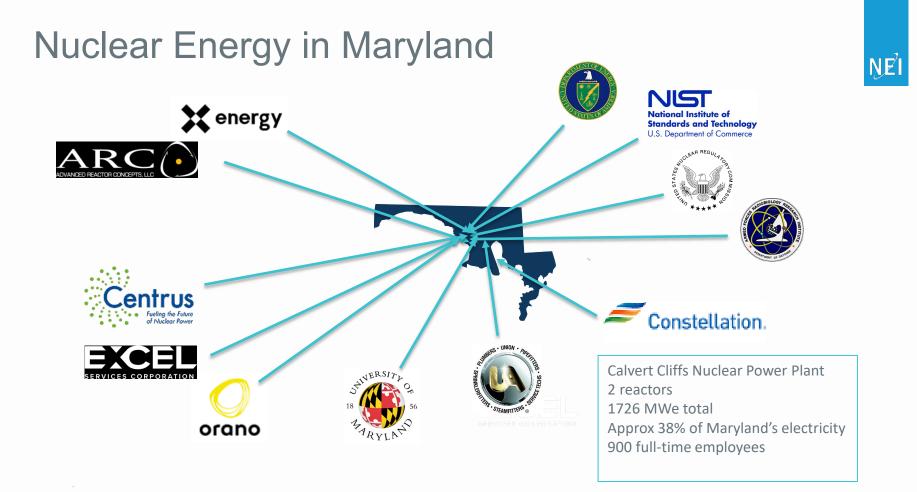
How a Pressurized Water Reactor works...


Source: https://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.html

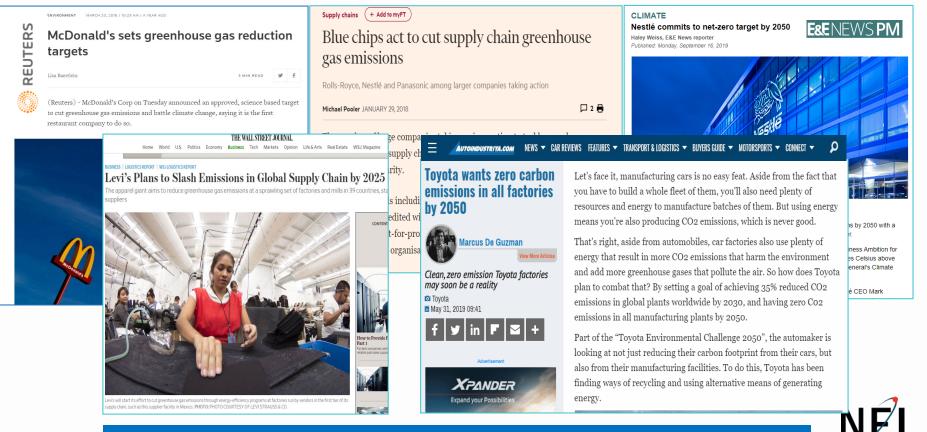
92 reactors at 53 plant sites across the country



Nuclear generated 19% of U.S. electricity in 2021

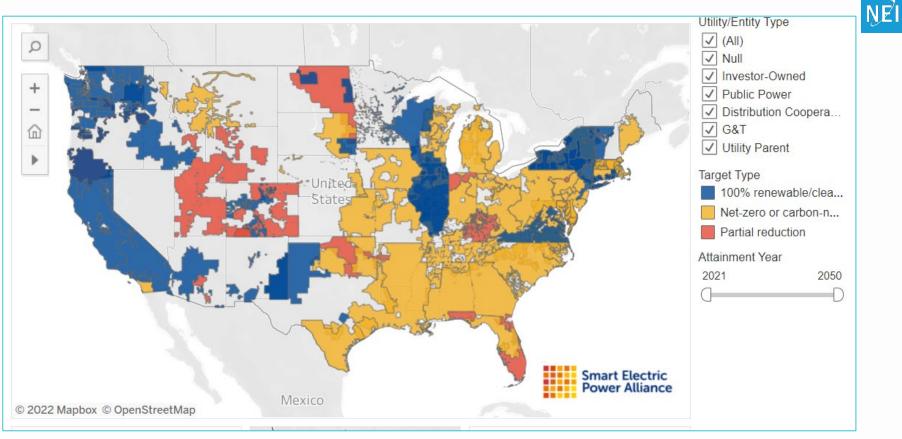

ŊÊI

Nuclear power continued to provide the majority of U.S. emissions-free electricity in 2021

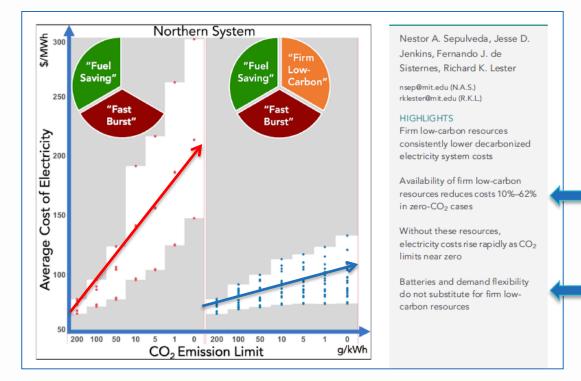


Source: U.S. Energy Information Administration Updated: March 2022

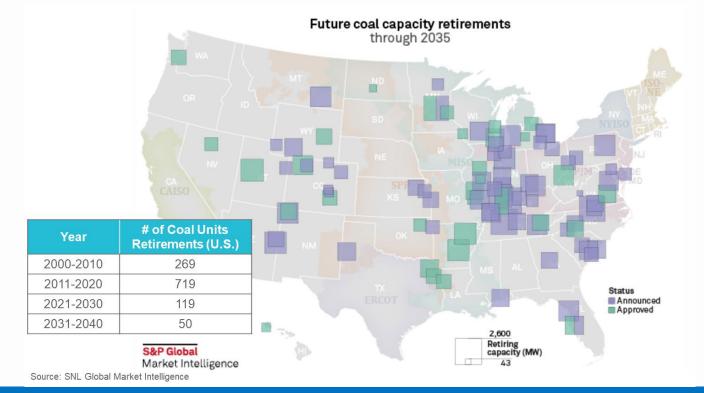
ŊÊI



THE EMISSIONS REDUCTION IMPERATIVE


>3,000 COMPANIES WITH SCIENCE-BASED CARBON REDUCTION TARGETS

UTILITIES WITH EMISSIONS REDUCTION TARGETS


Source: https://sepapower.org/utility-transformation-challenge/utility-carbon-reduction-tracker/

Firm, Low-carbon Generation (like nuclear) Enables Affordable Decarbonization

DECARBONIZATION WILL DRIVE FURTHER COAL PLANT CLOSURES – INCREASING RISKS TO RELIABILITY

MANY OF THESE PLANTS ARE OF SIMILAR SIZE TO SMRs/ADVANCED REACTORS

ŊÊI

NUCLEAR GENERATION CREATES LONG-TERM, WELL-PAYING JOBS

Coal Plant Position	# Dedicated Coal Positions	SMR Position	# Dedicated SMR Positions	Position Type	Degree of Retraining Required
Operations Supervisor	5	Senior Reactor Operator	5	Supervisor	High
Control Room Operator	10	Reactor Operator	15	Operator	High
Field Operator	15	Non-Licensed Operator	25	Operator	Low
Lab Operator/Chemistry/Scrubber	4	Chem Tech	14	Craft	Medium
Maintenance Supervisor	2	Maintenance Supervisor	3	Supervisor	Medium
Mechanical Craft	12	Mechanical Craft	21	Craft	Low
I&C Craft	9	I&C Craft	10	Craft	Medium
Electrician Craft	5	Electrician Craft	11	Craft	Low
Technician	11	Technician	13	Laborer	Low
Security Officer	20	Security Officer	48	Laborer	Low
Sub-Total	93		165		
All Other Positions	14		72	42 are O&M Support (Planners, Outage, etc.)	Medium
Total On-Site Positions	107		237		
Possible Centralized Positions 33					
Total Positions			270		

Sources: NuScale; ScottMadden analysis

NUCLEAR GENERATION IN U.S. PAYS HIGHEST AVERAGE WAGES

 $Sourcehttps://www.scottmadden.com/content/uploads/2021/10/ScottMadden_Gone_With_The_Steam_WhitePaper_final4.pdf$

BIPARTISAN LEADERS EMBRACE NUCLEAR ENERGY

Biden American Jobs Plan:

- Recognizes important role of existing nuclear
- Pledges support for demonstration projects, manufacturing infrastructure investments

Bipartisan Infrastructure Bill:

- Operating nuclear plant credit program
- Advanced reactor demonstration funding
- Large-scale H2 demos

Build Back Better Bill:

- Tax credits for existing reactors
- Tax credits for all new clean generation
- Expanded federal loan guarantees

2022 Innovation States: Policies

West Virginia and Connecticut Nuclear Moratorium Repealed

Indiana SMR project enabling

Alaska

Micro-reactor project enabling

Nebraska, Colorado, Oklahoma, Kentucky, Minnesota, Michigan SMR studies

Missouri

Repeal moratorium on CWIP

Wyoming

Support for the Natrium project

Illinois, Minnesota

Proposed nuclear moratorium repeal

Virginia, Ohio, New Jersey, New Hampshire SMR task forces

2022 Other State Policies

IMPACTING NUCLEAR

Maryland Climate Solutions Now Act

Louisiana Climate plan

North Carolina

Decarbonization plan

<mark>Virginia, Pennsylvania</mark> RGGI

Arizona

Clean Energy Standard

Nebraska

SLR, advanced nuclear licensing and reprocessing nuclear fuel studies

Oklahoma

Agreement with municipalities

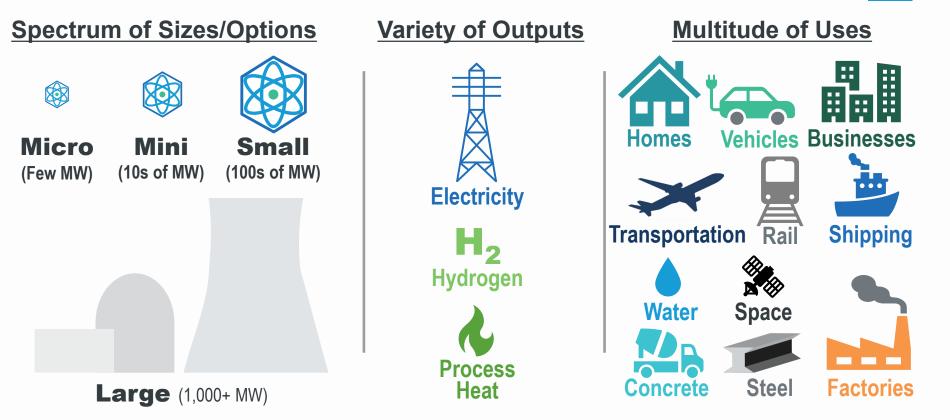
<section-header>

new

Futurable Energy

ELYSIUM INDUSTRIES

OKLO



Nuclear Provides Versatile Solutions

INHERENTLY = SIMPLER **SMALL** SAFE READILY **FASTER IMPROVED** FACTORY-**AVAILABLE** CONSTRUCTION PERFORMANCE BUILT EQUIPMENT • Off-the-shelf • 60-80% of Smaller Structures Higher Thermal

- Equipment
- Proven Performance

- Equipment
- U.S. Supply Chain Growth
- · Assembly vs. Construction
- Modern Construction Methods

- Efficiency
- Design and **Construction Best Practices**
- Operational Excellence ©2022 Nuclear Energy Institute 18

ARDP Demonstration Awards

- TerraPower.
 Natrium Reactor
 - Liquid sodium fast reactor - 345 MWe
 - Metallic fuel
 - Molten salt thermal storage for peaking to 500 MWe

ARDP Demonstration Awards

• **X** energy Xe-100

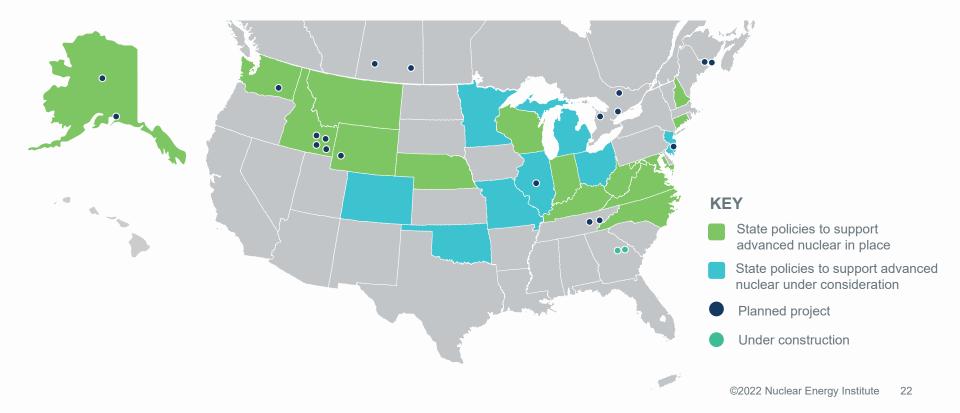
 Pebble bed Helium cooled gas reactor – 80 MWe

TRISO Fuel Pebble Cutaway

- Four reactors
- TRISO fuel

ŊÊI

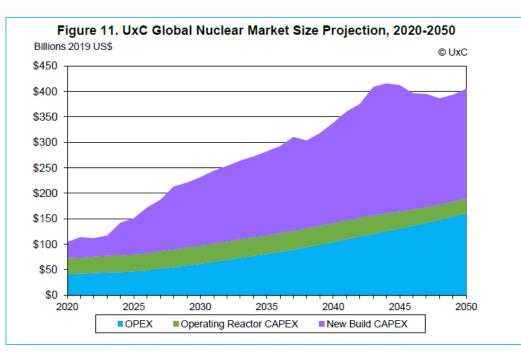
UAMPS


 Utah Associated **Municipal Power** Systems (UAMPS) plans to construct and operate a NuScale reactor at Idaho National Lab around 2029

 DOE approved \$1.4 billion multi-year cost share in October 2020 for UAMPS

Advanced Nuclear Deployment Plans

Projects in planning or under consideration in U.S. and Canada; >30 globally



MOVING BEYOND ELECTRICITY TODAY **Electricity focused** Electricity Integrated grid system **FUTURE** that leverages contributions Industry from nuclear fission Hydrogen for vehicles and industry beyond electricity sector e. Large Light Water Reactors Heat Clean Water Small Modular Reactors New Chemical Proceses Advanced Reactors

Tomorrow's nuclear will produce more than electricity

GROWING GLOBAL MARKET FOR NEW NUCLEAR ENERGY SYSTEMS

ESTIMATED \$8T+ GLOBAL NUCLEAR ENERGY MARKET THRU 2050

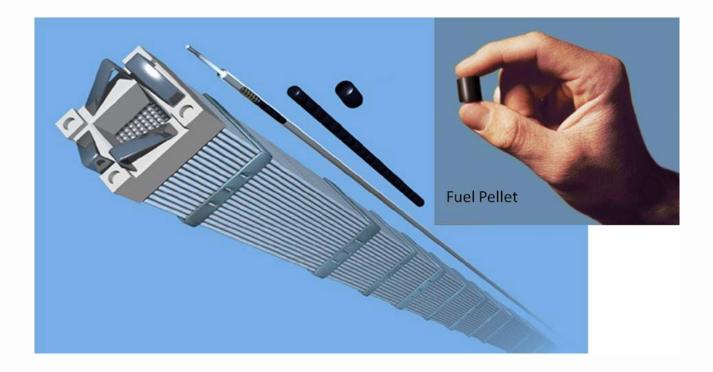
Source: https://www.nei.org/CorporateSite/media/filefolder/resources/reports-and-briefs/UxC-NEI-(IPCC-2050-Nuclear-Market-Analysis-PUBLIC)-2020-07-01.pdf

Developer	Utility / User	Location	Size	Target Online	
- Westinghouse AP-1000	Polska Grupa Energetyczna	Poland	6 @ 1,100 MWe	тво	
	CEZ	Czech Rep.	1-4 @ 1,100 MWe	TBD	
	Energoatom	Ukraine	5 @ 1,100 MWe	TBD	
	Nuclear Power Corporation	India	6 @ 1,100 MWe	TBD	
	Bulgaria Energy Holding	Bulgaria	1-2 @ 1,100 MWe	TBD	
	TBD	Slovenia	1,100 MWe	TBD	
	Various	China	Up to 20 @ 1,100 MWe	TBD	
NuScale	KGHM Polska Miedz	Poland	6 @ 77MW	2029	
	Nuclearelectrica	Romania	6 @ 77MW	2028	
GEH BWR X- 300	OPG	ON, Canada	300 MW	2028	
	Synthos & Orlen	Poland	300 MW (>10 plants)	Early 2030s	
ARC	NB Power	NB, Canada	100 MW	2030	
Moltex	NB Power	NB, Canada	300 MW	2032	
TBD	SaskPower	Sask., Canada	~300 MWe (4 plants)	2032 to 2042 ©2022 Nuclear Energy Institute	

KEY TAKEAWAYS

- Consumers and policymakers (U.S. and abroad) increasingly demanding lowcarbon electricity; states and utilities responding with ambitious goals
- Growing understanding that new nuclear is extremely valuable to a cleaner energy system
 - <u>Least-cost, most reliable</u> low-carbon systems include firm clean generation
 - State and federal policy actions needed to incentivize investment, drive down costs
 - Nuclear can help decarbonize non-electric energy uses
- Tremendous opportunities in domestic and global markets

WIND + SOLAR + NUCLEAR + STORAGE IS THE BALANCED MIX THAT WILL GET US TO A CLEAN ENERGY FUTURE


QUESTIONS?

NUCLEAR ENERGY ASSEMBLY

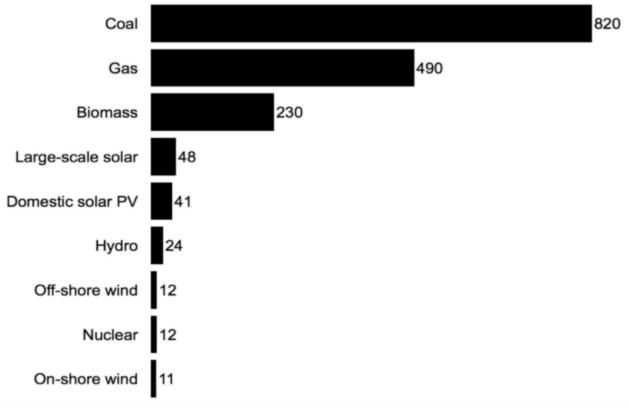
Washington, D.C. June 20-22

nei.org/nea

(source: https://nuclear.duke-energy.com/2014/02/11/do-we-have-enough-nuclear-fuel)

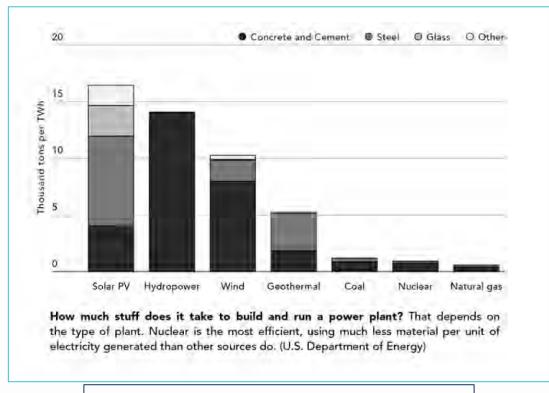
(source: https://nuclear.duke-energy.com/2016/10/05/the-facts-about-used-nuclear-fuel)

The 40 used fuel casks hold all the fuel from 29 years of Connecticut Yankee operations



If the electricity produced by this fuel instead came from natural gas, the emitted CO2 would fill the Superdome. More than 3,000 times.

(source: http://www.connyankee.com/html/fuel_storage.html)



Life cycle emissions from electricity generation, gCO₂/KWh

Raw Material Inputs per TWh

Source: How to Avoid a Climate Disaster, Bill Gates, 2021